
480 

Acta Cry,~t. (1963). 16, 480 

T h e  Crystal lography of t h e  A u s t e n i t e - M a r t e n s i t e  Transformat ion 
in an Fe-Cr-C Alloy 

BY K. A. JOH~SO~ 

Los Alamos Scientific Laboratory, Los Alamos, New Mexico, U.S.A.  

A:ND C. ~4~. WAYMAN 

Metallurgy Department, University of Illinois, Urbana, Ill., U.S.A.  

(Received 2 April 1962) 

An analysis of the crystallography of the austenite-martensite transformation in a high purity 
Fe-Cr-C alloy was made. Lattice parameters of the two phases, the austenite-martensite orientation 
relationship, and the habit  plane of the martensite were determined experimentally. Considerably 
less scatter in habit  plane poles was observed than has been reported by others for a similar alloy. 
None of the existing crystallographic theories adequately explains the results, and it is suggested 
that  an additional anisotropic interface distortion be incorporated into the theory. An inverse 
method of analysis for determining the pattern of inhomogeneity is discussed, with particular refer- 
ence to the orientation relationship, and it is shown that the orientation relationship is a com- 
paratively inaccurate quanti ty when used in theoretical calculations. 

Introduct ion 

Based on the principle of an undis tor ted and  un- 
rotated hab i t  plane, recent crystal lographic analyses 
of diffusionless phase t ransformat ions  have led to the 
consideration of the total  t ransformat ion distort ion 
(shape deformation) as a pure lat t ice deformation 
(Bain strain) coupled with a latt ice invar ian t  deforma- 
t ion (inhomogeneous shear) such as fine scale slip or 
twinning,  and a rigid body rotation. The theory of 
Weehs le r -L iebe rman-Read  (WLR) (1953) (which is 
equivalent  to the later  analyses of Bi lby  & Bullough 
(1956), and  Bi lby  & Frank  (1960)) is based on an 
interface plane which is undistor ted and unrotated.  
The theory of Bowles-Mackenzie (1954a, b, c) (BM) 
t reats  the interface plane as one which is unrotated,  
bu t  possibly (uniformly) dilated. In  the case of iron 
alloys, WLI~ (1960) proposed to account for a var ia t ion 
in  habi t  plane and orientat ion relationship, etc., 
by  a var ia t ion in  the latt ice invar ian t  shear system, 
main ta in ing  the requirement  tha t  the interface re- 
mains  macroscopically undistorted,  while BM adhered 
to one par t icular  shear system, but  permi t ted  the 
interface di la t ion to vary, thus causing ~ change in 
the  hab i t  plane and other crystal lographic features 
with a d i la t ion parameter .  In  this  paper, the  ap- 
proaches of BM and W L R  have been used to analyze 
the crystal lographic aspects of the mar tens i te  trans- 
formation in  an  alloy consisting of Fe - l .51  wt .% C- 
3.09 wt .% Cr. :For this alloy, an exper imenta l  deter- 
mina t ion  of the lat t ice parameters  of the austenite  
and martensi te ,  the habi t  plane of the martensi te ,  
and  the lat t ice orientation relat ionship between the 
two phases was made. 

Theoret ica l  

According to the theory of W L R  the shape deforma- 
tion is given by the mat r ix  E, which will  not in 
general  generate the product lat t ice from the parent  
lattice. This mat r ix  describes the displacement  of 
surface scratches inscribed on a specimen prior to 
its t ransformat ion  from the parent  into the product  
The decomposition of the mat r ix  E by W L R  was 
done in the following way:  

E = R P G  (1) 

where R is a rotat ion matr ix ,  P is the lat t ice deforma- 
t ion (Bain strain), and G is a latt ice invar ian t  shear 
of amount  g on a certain plane and in a cer tain 
direction. All matr ices  in (1) are given with respect 
to an orthogonal set of axes along the austeni te  cube 
edges. Equat ion  (1) can also be ~Mtten as 

E=RG,nP (2) 

where the lat t ice invar ian t  shear, Gin, occurs in the 
mar tens i te  lattice. However, i t  is more convenient  
(mathematically) to consider the lattice invariant 
shear to occur in the austenite.  The mat r ix  G represents 
an  invar ian t  plane s t ra in  because it  is a s imple shear. 
E is also an  invar ian t  plane s t ra in  since this  ma t r ix  
represents a simple shear on the habi t  plane coupled 
wi th  a normal  component  due to the volume change 
of the t ransformation.  The matr ices  E -1 and  G -1 also 
represent invar ian t  plane strains since the inverse of 
an invar ian t  plane s t ra in  is i tself an invar ian t  plane 
s t ra in  (Bowles & Mackenzie, 1954a). 

The analysis  of BM is exact ly  equivalent  to t ha t  
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of WLR when the interface plane is undilated. 
Essentially, BM wrote equation (1) in the form 
(for no interface dilation). 

EG-I = R P  (3) 

where, as was pointed out, R P  is an invariant line 
strain. The resultant of two invariant plane strains 
(due to E and G -1) is an invariant line strain, along 
the line of intersection of the two planes (the habit 
plane and the shear plane) which are invariant. 

In the case where the interface plane is assumed to 
be uniformly dilated (i.e., the {225}A transformation 
in steels) the shape deformation is given by the 
matrix E/(~ where (~ is a scalar having values between 
1.00 and 1.02 for steels. That is, E/6 is an invariant 
plane strain. The corresponding invariant line strain 
is then L=(~RP, i.e., the near unity eigenvalue 
corresponding to the unrotated line of the matrix RP 
differs from unity by a factor (5. 

The elements of the matrix P are known from the 
lattice parameters of the two phases and the (assumed) 
lattice correspondence. The rotation matrix R can 
always be determined if the lattice orientation rela- 
tionship is known, because R is the rotation which 
takes vectors and normals in the as-Bain-strained 
position to their final position in the martensite. Or, 
alternatively, R may be viewed in the following 
way (Bullough & Bilby, 1956). The application of 
PG to any vector in the habit plane causes this 
vector to undergo a rotation exactly opposite to 
that  produced by the application of R to the same 
vector. That is, R ensures that  the habit plane is 
unrotated. 

In the case of known transformations in iron alloys, 
the matrix R P  has three real eigenvalues; one of 
these three eigenvalues is within a percent or two of 
unity. The eigenvector corresponding to the near- 
unity eigenvalue represents the unrotated and poten- 
tially invariant line. In the absence of an interface 
dilation (WLR) the eigenvalue is exactly unity, but 
in the case of the BM theory, differs from unity by 
a small dilation. 

Historically, the martensite problem has been 
treated by using as input data the known lattice 
parameters (and correspondence) and an assumed 
plane and direction for the lattice invariant shear. 
The solution to the problem gives the amount of 
lattice invariant shear, g, the habit plane left in- 
variant by E, and the elements of the matrices E 
and R. 

Theoretically, if certain information is known from 
experiment, the inverse problem can be worked to 
recover the system of the lattice invariant shear. 
This problem is particularly intriguing because of 
recent experimental determinations of the fine struc- 
ture in martensitic phases by transmission electron 
microscopy. If the lattice parameters, orientation 
relationship, and habit plane are known, one can in 

principle determine the plane, direction, and amount 
of lattice invariant shear (hence the matrix G), and 
the matrix E (hence the shape deformation). The 
inverse problem was described graphically by Lieber- 
man (1958) for iron alloys, and BM (1954b) indicated 
how some information can be recovered analytically. 
Graphical analysis lacks the precision attainable by 
the matrix method, and in some degenerate cases the 
graphical method cannot be used. 

An inverse analytical method for recovering the 
elements of G is briefly described. The matrix R can 
be obtained by applying Euler's theorem for solid 
body rotations. If the positions of two non-collinear 
vectors (or plane normals) are known (from the 
orientation relationship) and if the positions of these 
same vectors (or normals) due to the strain 6P 
(or (SP) -1) are known (this is always known from 
the lattice parameters and correspondence), an axis 
of rotation and an amount of rotation to make the 
Bain-strained positions of the vectors (normals) 
coincide with the final positions can be determined. 
If u~ is unit rotation axis and the amount of rotation 
is 0, then the generalized rotation matrix R (with 
respect to the austenite axis system) is given by 

R~j = ~j cos 0 + uiuj(1 - cos 0) - eiJkUk sin 0 (4) 

where (~j is the Kronecker delta and e~z~ is a permuta- 
tion symbol. 

Since R and P are known from experimental 
determinations of the orientation relationship and 
lattice parameters, the appropriate eigenvector (in- 
variant line) can be found from the equation 

( R P -  2I)X~=0 (5) 

where I is the identity matrix and X~ is the un- 
rotated line. The dilation can be obtained from the 
condition 

~ 2 = 1 .  (6) 

The habit plane normal is known from experiment, 
and arbitrary vectors v in the habit plane are given by 

v = k x n  (7) 

where k is any unit vector, and n is a unit vector 
along the habit plane normal. I t  has been shown 
(Bowles & Mackenzie, 1954a) that  the displacement 
of an arbitrary vector in the habit plane by the 
invariant line strain is in the same direction as the 
vector Lde, where de is the direction of the lattice 
invariant shear. That is, 

( L - I ) v  II Ld2. (8) 

Thus the direction of the lattice invariant shear is 
given by 

d2 II L - I ( L - I )  v .  (9) 

Since both the invariant line, l, and shear direction, 
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d2, mus t  lie in  the shear plane, p2, i t  follows tha t  the 
shear  p lane  normal ,  p% is given by* 

p~ =I x d~. (10) 

Experimental procedure 
The al loy s tudied was t r ip ly  vacuum melted,  prepared 
f rom high  p u r i t y  mater ia ls ,  and  was analyzed to 
conta in  Fe-3-09 wt .% Cr- l .51  wt .% C. To ensure com- 
plete carbide dissolution and  homogeneous austenite,  
the  al loy was aus teni t ized 100 hours a t  1228 °C. 
Austeni t iz ing was done in  evacuated quartz  capsules, 
and  the  resul t ing austeni te  grain size was from 
2 to 6 mm.  No change in composit ion of the specimens 
dur ing hea t  t r ea tmen t  could be detected by  chemical 
analysis.  All  specimens were quenched from 1228 °C 
to room temperature ,  and were ent i re ly  austeni t ic  at  
room temperature .  The M~ tempera ture  was found 
to be between - 1 4  and - 1 8  °C after  fur ther  cooling, 
and i t  was observed tha t  this  al loy exhibi ted  the 
'burs t '  phenomenon.  

The detai led procedure for determining hab i t  planes, 
or ientat ion relationships,  and  lat t ice parameters  has 
a l ready been described in  connection wi th  another  
investigatior~ ( W a y m a n  et al., 1961). All Laue photo- 
graphs were t aken  wi th  a microbeam X-ray  unit ,  
and lat t ice parameters  were de termined by  means  of 
a diffractometer.  One orientat ion photograph ex- 
h ibi t ing both  mar tens i te  and  austenite  Laue spots 
was obtained by  polishing paral le l  to a par t icular  
mar tens i te  plate  whose habi t  plane direction cosines 
were previously determined.  

Four  different  specimens were studied, and twelve 
hab i t  plane determinat ions  were made. All hab i t  plane 
determinat ions  were made  on re la t ive ly  long martens-  
ire plates,  where the  plane of the  plate  and  the plane 
of the midr ib  were not  s ignif icant ly  different. The 
large plates  p re sumab ly  resul ted from the  leng thy  
hea t  t r ea tmen t  and  large austeni te  grain size. How- 
ever, i t  was observed tha t  when some smaller  plates  
formed, there was as much  as seven degrees differ- 
ence between the  plane of the midr ib  and  the mean  
plane of the plate.  I n  addit ion,  the  midr ibs  of the  
smaller  plates (hid) which formed near  larger plates 
(hkl) were paral le l  to the  larger plates,  a l though the 
smal ler  plates themselves were not  necessari ly ex- 
ac t ly  para l le l  to the larger plates.  In  other words, 
midr ibs  appeared para l le l  a l though plates were not 
necessari ly parallel .  

Experimental results 
The results  of the  hab i t  plane determinat ions  for the 
subject  al loy are given in Table 1. These results are 
plot ted on a common uni t  t r iangle in Fig. 1. I t  can 
be seen tha t  al l  hab i t  plane poles fell wi th in  a two 

* The {225}A case is degenerate since the invariant line 
and shear direction are the same, (011}A. 

Table 1. Results of habit plane determinations, 
Fe- l .51  C-3.09 Cr 

Specimen Direction 
no. Plate cosines* 

27 a, b, c, d 0-899 
0.364 
0.244 

e, f , g 0.890 
0.382 
0.250 

29 a 0.887 
0.375 
0.268 

30 a 0.887 
0.380 
0.259 

b 0-890 
0.391 
0.254 

33 a 0.900 
0.367 
0.234 

b O.886 
0.367 
0.282 

* Permuted to common variant. 

and  one-half degree solid angle. Fur thermore ,  the  
hab i t  plane was nei ther  (225}A nor {259}A as is usual ly  
found for high carbon steels. This makes  i t  clear 
tha t  for iron alloys, hab i t  planes between {225} and 
{259} do exist. A similar  result  was obtained by  
Otte & Read  (1957), who examined  an  alloy of 
nominal  composition Fe-I-5C-2-8Cr,  but  in this case, 

~11 

/ 
/ 

001 ~/// 011 

Fig. 1. Results of twelve habit plane determinations for 
Fe-I-51C-3-09Cr. All poles have been permuted to a 
common habit plane variant with respect to austenite. 
See Table 1 for Miller indices. 

an extraordinary scatter in habit plane poles was 
observed. The scatter is probably in part due to the 
smallness of the plates investigated (shown at 1400 × 
in Otte & Read (1957) as compared with 100× in 
the present work). With such small plates, a good 
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deal of arbitrariness is involved in making a decision 
as to what the habit plane may in fact be. Moreover, 
the alloy studied was not chemically analyzed after 
treatment, and the lattice parameters and orientation 
relationship were not determined. 

The orientation relationship was determined from 
the stcreographic projection to be 

(lll)A 0"3 ° from (0ll)M 
[011]A 2"8 ° from [ll l]M 
[ll0]A 6"1 ° from [ l l l ]M.  

Because of the smeared nature of the Laue spots 
from the martensite, the (011)M and (lll)A reflections 
nearly overlapped. However, a distinction between the 
two reflections could be made, and their separation 
appeared to be 0.3 ° . In addition, when an orientation 
relationship is determined by polishing parallel to a 
martensite plate, the plane of the stereographic 
projection becomes essentially the habit plane. Within 
the limits of observation, (ill)A, (0ll)M, and the 
habit plane were cozonal, with the (0II)M reflection 
lying between (lll)A and the habit plane. This 
orientation relationship is plotted stereographically in 
Fig. 2. 

~:[01~]A 

(oolh 

Fig. 2. Stereographic projection showing orientation relation- 
ship between martensite and austenite. The orientation 
relationship was obtained by polishing parallel to a marten- 
site plane whose direction cosines were previously deter- 
mined to be (0.890, 0.382, 0.250) with respect to the austen- 
ite. 

These results can be compared to the Greninger- 
Troiano orientation relationship" 

(lll)A If (011)M within 1 ° 
[011]A 2"5 ° from [ll l]M 
[I10]A 6"5 ° from [lll]M . 

The lattice parameters were found to be 

Austenite : a0 = 3.626 _~. 
Martensite: a = 2.854 _~, c = 3.060 _~; c/a = 1.0722. 

D i s c u s s i o n  

I t  is interesting to consider the theoretical predictions 
of the crystallographic features of the transformation 
for this alloy. Because of recent observations (Nutting 
& Kelly, 1960; Nishiyama, 1960) of {ll2}M twinning 
in several iron alloys which exhibit both the {225}~ 
and (259}A type habits, it is the most reasonable 
assumption to consider that  the transformation 
iruhomogeneity or lattice invariant shear is of the 
{l12}M ( l l l ) M  type. The analysis of this alloy has 
been based on the assumption of (112}M inhomogeneity 
(equivalently {011}A). 

6= 1 "0108 

= • 

Fig. 3. Experimentally determined habit planes and the 
theoretical variation of the habit plane with the parameter 
delta according to the theory of Bowles & Mackenzie. 
The best agreement between theory and experiment was 
obtained with (~= 1.0108. 

WLI~ derived an expression for the habit plane 
direction cosines in terms of the elements of the Bain 
strain matrix by assuming that  the lattice invariant 
shear system was {l12}M (l l l}M. These expressions 
are given in Wechsler et al. (1953) as equations 
(32), (33), and (34). If one substitutes 6Ui for ~, in 
these expressions, the habit plane for a given uniform 
dilation, 6, can be determined (Christian, 1955). 
Fig. 3 shows the variation of the predicted habit 
plane with the dilation parameter, 6, as well as the 
experimental habit plane determinations. As has been 
shown (Wechsler et al., 1953) the WLR analysis 
(6=1) predicts essentially the {259}A type habit 
plane, in considerable disagreement with the observed 
habit plane for this alloy. In fact, WLI~ examined 
a wide range of volume ratios and axial ratios with 
the assumption of (l12}M twinning, and all predicted 
habit planes fell within a small grid near (259}~. 
On the other hand the Bi~I analysis with 6= 1.0108 
predicts a habit plane less than 1½ ° from the mean 
experimental one. However, the situation is less 
convincing when the orientation relationship is taken 
into consideration. 

The theoretical orientation relationship can be 
obtained in the following manner. The invariant line 
is readily calculated as the intersection of the habit 



484 T H E  A U S T E N I T E - M A R T E N S I T E  T R A N S F O R M A T I O N  IN AN Fe-Cr-C ALLOY 

plane (theoretical) and the shear plane. This is the 
eigenvector with unit eigenvalue of the matrix 5RP. 
In addition, a plane with an invariant normal (Bowles 
& Mackenzie, 1954a), n, which contains the directions 
of displacement due to the strains E and G -1, can 
be determined since this normal must be orthogonal 
to the inhomogeneous shear direction and lie on the 
cone which describes the final position of unextended 
lines due to the strain c3P. Or equivalently, the 
invariant normal can be found from the condition 
n T L = n T .  * The invariant line and invariant normal 
uniquely define the orientation relationship. 

The rotation matrix, R, which describes the orienta- 
tion relationship, is obtained by applying Euler's 
theorem to the following four vectors: the initial 
position of the invariant line, 1: the position of 1 
due to the strain dP; the initial position of the plane 
with the invariant normal, n; and the final position 
of this normal due to the strain (c3P)-1 

For the WLR case, the theoretical rotation matrix 
R is computed to be 

0-99665830 0.08004464 0.01628183\ 
R =  -0.07772816 0-99063976 -0.11221059J. 

-0.02511128 0-11057006 0.99355106/ 

For the BiV[ analysis with d = 1-0108, R is computed 
to be 

0.99758507 0.06243421 0.03042998~ 
R =  -0.05801074 0-98991119 -0.12926942J. 

0.03819381 0.12719198 0.99114248/ 

The theoretical position of the (011) plane of the 
martensite is given by the position of the transformed 
(lll)A plane normal, 

(1 ll)A(dRP)-I 
(011) = 

I(lll)A(~RP)-ll 

In the WLR case, (011)M is computed to be 1' from 
( l l l )a ,  which is at variance with the experimental 
orientation relationship. For the BM case with 
~=1.0108, (011)M iS computed to be 11' from (lll)A; 
however, the theoretical (011)M plane does not lie 
between the habit plane and (111)A, as experimentally 
observed. The use of a uniform dilation has been 
criticized previously on this basis (Wayman, 1961). 

The theoretical position of the [ll l]M direction can 
be calculated as 

[111]§ = ~RP[011]r M 

[ dRPE01Y]~zl " 

In the WLI~ case [llI]M is found to be 2 ° 31' from 
[011]A which is in reasonable agreement with the 
experimental [lll]M and [011]a directions. However, 
as mentioned, the WLR analysis does not yield the 
correct habit plane or orientation between the close 
packed planes of the two structures. For the BM 
analysis, [011]A is computed to be 55' from [lll]M, 

* T d e s i g n a t e s  t r a n s p o s e .  

in disagreement with the observed value, 2°48 '. 
Therefore, on the basis of the present data for the 
subject alloy and the assumption of {112}M twinning, 
it appears that  the situation may be more com- 
plicated than that  given by theories assuming a 
uniform match of the two structures at the interface. 
A more general approach to the martensite crystallo- 
graphy problem involving a non-uniform dilation is 
presently being studied (C. M. Wayman, unpublished 
work; J. K. Mackenzie, private communication) and 
it is suggested that  the incorporation of an additional 
anisotropic interface strain will give better agreement 
between theory and experiment, and in addition, 
account for 'sidewise' scatter in habit planes. 

Although the inverse problem of deducing the 
elements of the lattice invariant shear system from 
the experimentally observed habit plane, orientation 
relationship, and lattice parameters is appealing in 
principle, there are certain difficulties which detract 
from the general usefulness of the inverse method just 
described. In reference to the invariant line strain 
and its factorization into two invariant plane strains 
Mackenzie (1960) and Bowles & Mackenzie (1954b) 
pointed out that  the factorization is only possible 
when the orientation relationship satisfies certain 
geometrical conditions, which do not normMly obtain 
owing to inevitable experimental errors. In fact, 
this means that  the invariant line strain, L =  (3RP, 
is inaccurate because of uncertainties in the orienta- 
tion relationship, i.e., the matrix R. In other words, 

t h e  invariant line as determined as an eigenvector 
of the matrix dRP does not always lie in the habit 
plane, and in such a case, the inverse method has no 
meaning. I t  will be shown below that  this is a very 
significant point. 

In this work, the Laue photogram on which the 
orientation relationship was based exhibited the 
following martensite reflections (in addition to those 
from the austenite): (011), (111), (012), (013), (132), 
and (213); the orthogonal martensite axes were also 
obtained from zones. The rotation matrix R can be 
determined by applying Euler's theorem to pairs of 
vectors and normals. The matrix R is such that  
normals and vectors in the Bain-strained position 
(designated (hkl)' and [uvw]') must be made coin- 
cident with the actual positions of the vectors and 
normals from the Laue photogram (designated (hkl) 
argot [uvw]). 

A computer program was worked out so that  
orientation relation matrices R could be determined 
from pairs of vectors and normals. All possible pairs 
were considered. That is, for example, [010] and [010]', 
were used along with [100] and [100]', (011) and (011), 
(012) and (012)', etc. Thus, numerous R matrices were 
determined. The matrix P is known from the lattice 
parameters and therefore the invariant line strain 
L = d R P  can be determined for each rotation matrix R. 
(This assumes that  the lattice parameters are known 
to a more certain degree than the orientation relation- 
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ship.) The eigenvalues and eigenvectors of the matr ices  
R P  were then  calculated by  solving the characterist ic  
equation. At least  one of the three eigenvalues was 
near  un i ty  and the associated eigenvector de termined 
the potent ia l ly  invar ian t  line (to be made invar ian t  
wi th  the parameter  (~). 

0108 

~ . ( I o o )  

(ooI) 
Fig. 4. Points on stereographie projection show various 

positions of the invariant line of the transformation. 
For each value of the matrix R, the invariant line was 
determined by solving the characteristic equation. The 
scatter is apparent. 

Fig. 4 shows a stereographic project ion on which 
are plot ted the invar ian t  lines determined by  pair ing 
vectors and normals  wi th  [010]M and [010]:~r. Also 
is shown the invar ian t  l ine corresponding to (~ -- 1.0108, 
the value of 8 which gave best agreement  between 
the observed and theoret ical  hab i t  plane. I t  is seen 
tha t  considerable scat ter  exists between the 'ex- 
per imenta l '  invar ian t  lines. Bearing in mind  tha t  all  
of these invar ian t  lines were de termined from one 
Laue photogram, i t  is clear tha t  even one determina-  
t ion of the orientat ion relat ionship is not  of i tself  
ent i re ly  consistent. In  addition, for each of these 
invar ian t  lines, the value of the parameter  delta was 
de termined from the condition (~t--1. These values 
were all  unreasonably  large ((5 >1.025), and there 
was much  scatter between indiv idual  values. There- 
fore, on the basis of the observed da ta  it  is apparent  

t ha t  the invar ian t  l ine s t ra in  is an exper imenta l ly  
inaccurate  quant i ty .  Mackenzie (1957) has suggested 
a method  for minimiz ing  exper imenta l  errors in 
orientat ion relat ionships;  this  amounts  to a least- 
squares f i t t ing of the elements of the ma t r ix  R, 
but  does not  necessari ly ensure tha t  the ad jus ted  
invar ian t  l ine will  lie in  the hab i t  plane. 

The discussions wi th  Professors T. A. Read  and D. S. 
L ieberman  have been valuable,  and the assistance of 
Mr Paul  Lipinski  with the digi tal  computer  calcula- 
t ions is appreciated.  Thanks  are also due to Dr J.  K. 
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out several errors, and  offered helpful  crit icism. 
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